We’ve developed unique SMT reflow soldering techniques at Win2uit.

As designs get more complex and include small 0201 components and large power components (as in D2Pak on the same design), oven profiling is just as important as a good stencil design. Each design needs to be evaluated based on the board layers and copper thickness as well. With the high cost of some of the BGA’s and Leadless pats, Win2uit has developed some unique techniques to evaluate QFN and BGA solder joints without damaging the parts.

Reflow soldering is a process in which a solder paste (a sticky mixture of powdered solder and flux) is used to temporarily attach one or several electrical components to their contact pads, after which the entire assembly is subjected to controlled heat, which melts the solder, permanently connecting the joint. Heating may be accomplished by passing the assembly through a reflow oven or under an infrared lamp or by soldering individual joints with a hot air pencil.

Reflow soldering is the most common method of attaching surface mount components to a circuit board, although it can also be used for through-hole components by filling the holes with solder paste and inserting the component leads through the paste. Because wave soldering can be simpler and cheaper, reflow is not generally used on pure through-hole boards. When used on boards containing a mix of SMT and THT components, through-hole reflow allows the wave soldering step to be eliminated from the assembly process, potentially reducing assembly costs.

The goal of the reflow process is to melt the solder and heat the adjoining surfaces, without overheating and damaging the electrical components. In the conventional reflow soldering process, there are usually four stages, called “zones”, each having a distinct thermal profile: preheat, thermal soak (often shortened to just soak), reflow, and cooling.